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Abstract

In this work, we explore the use of Large Language Models (LLMs) for knowledge engineering tasks in
the context of the ISWC 2023 LM-KBC Challenge. For this task, given subject and relation pairs sourced
from Wikidata, we utilize pre-trained LLMs to produce the relevant objects in string format and link
them to their respective Wikidata QIDs. We developed a pipeline using LLMs for Knowledge Engineering
(LLMKE), combining knowledge probing and Wikidata entity mapping. The method achieved a macro-
averaged F1-score of 0.689 (0.7007 online evaluation) across the properties, with the scores varying from
1.00 to 0.328. These results demonstrate that the knowledge of LLMs varies significantly depending on
the domain and that further experimentation is required to determine the circumstances under which
LLMs can be used for automatic Knowledge Bases (e.g., Wikidata) completion and correction. The
investigation of the results also suggests the potential contribution of LLMs in collaborative KE. The
code is available at: https://github.com/bohuizhang/LLMKE.

1. Introduction

Language models have been shown to be successful for a number of Natural Language Processing
(NLP) tasks, such as text classification, sentiment analysis, named entity recognition, and
entailment. The performance of language models has seen a remarkable improvement since the
advent of ChatGPT [1] and GPT-4 models [2], which induced the development of several other
LLMs such as LLama from Meta [3], Claude from Anthropic', and Bard from Alphabet?.

This surge in the development and release of large LMs, many of which have been trained
with Reinforcement Learning with Human Feedback (RLHF) [4], has allowed users to consider
the LMs as knowledge repositories, where they can interact with the models in the form of
‘chat’ or natural language inputs. This form of interaction, combined with the unprecedented
performance of these models across NLP tasks, has shifted the focus to the engineering of the
input, or the ‘prompt’ to the model in order to elicit the correct answer. Subsequently, there
has been a steady increase in research outputs focusing on prompt engineering in the recent
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past [5, 6].

The idea of using LMs to construct and complete knowledge graphs (KGs) has been inves-
tigated by many studies [4, 7, 8]. However, the recent boost in performance has once again
brought to the surface the question of using LMs for, or even as, KGs.

Despite the incredible promise of LLMs as knowledge stores, there are fundamental differences
that set them apart and even disadvantage them as compared to KGs. The reasoning and
inference power of the KGs are the most important of these differences. Not only do traditional
KGs store facts, they also impose logical constraints on the entities and relations in terms of
defining the types of the entities as well as prescribing the domain and range of the relations.
Additionally, the most popular and successful LLMs have been trained on data obtained from
publicly available sources, and due to the inherent limitations of the training method of these
models, they tend to exhibit expert-level knowledge in popular domains while being largely
ignorant of the lesser-known ones.

In this paper, we describe our approach to using LLMs for Knowledge Engineering (KE)
tasks, especially targeting solving the ISWC 2023 LM-KBC Challenge, and report our findings
regarding the prospect of using these models to automate the process of KE. The task set by this
challenge is to predict the object entities (zero or more) given the subject entity and the relation
that is sourced from Wikidata. For instance, given the subject Robert Bosch LLC with Wikidata
QID 928973218 and the property CompanyHasParentOrganisation, the task is to predict the
list of object(s) Robert Bosch (Q234021). We used two state-of-the-art LLMs, gpt-3.5-turbo® and
GPT-4 [2] for this task. By performing different experiments using few-shot approaches, as
well as leveraging appropriate context, we have been able to achieve a macro-average F1 score
of 0.689 (0.7007 on CodaLab), with F1-scores ranging from 0.3282 in the PersonHasEmployer
property to 1.0 in the PersonHasNobelPrize property.

2. Related Works

2.1. LLMs for Knowledge Probing

The ability of LLMs to perform knowledge-intensive tasks, especially knowledge probing,
has been extensively investigated. In particular, several previous works have attempted to
use language models to construct or complete knowledge graphs. Among early works, the
LAMA paper by Petroni et al. [9, 10] investigated the task of knowledge graph completion
with language models by extracting Wikidata facts via probing the LMs. Along similar lines,
KG-BERT leverages the BERT language model to perform the link prediction task for knowledge
graph completion[11]. The extent of the usefulness of LLMs for the construction and completion
of knowledge graphs has since been further analyzed [12]. Follow up work after the LAMA
improved the performance even further [5, 13]. Prompt engineering has caught the attention of
many recent works that aim to elicit knowledge from the language models [7, 14]. These works
are the most similar to our approach in this paper.

*https://platform.openai.com/docs/models/gpt-3-5



2.2. Benchmarks and Datasets

To fulfil the need for investigating the ability of LLMs to perform knowledge-intensive tasks,
knowledge-oriented benchmarks and datasets have been proposed. They can be primarily
classified as two types: question answering and fact completion [15]. In the fact completion
datasets, facts are formatted in (subject, relation, object(s)) triples. As a very first dataset in
the LM era, LAMA was constructed from a variety of knowledge graph sources of factual
and commonsense knowledge. KAMEL [16] extended LAMA from single token objects to
multi-token. KILT [17] was constructed from Wikipedia pages and can be applied to various
knowledge-intensive language tasks. WikiFact [15] constructed as part of the HELM benchmark
covers broader domains, and, finally, KoLA [18] aimed at measuring the real-world performance
of LLMs by expanding beyond language modelling and attempting to measure the ability of
the models in all facets of knowledge processing, ranging from knowledge memorization to
knowledge creation.

3. Methods

3.1. Problem Formulation

Most of the previous works on using LLMs for fact completion stop at the string level, which
leaves gaps for constructing hands-on knowledge graphs and thus hinders downstream applica-
tion. Our work pushed a step forward on this task, where the extracted knowledge is not only
in string format but also linked to their respective Wikidata entities. Formally, given a query
consisting of subject entity s and relation r, the task is to predict a set of objects {0;} with
unknown numbers (|[{0;}| > 0) by prompting LLMs and mapping the objects to their related
Wikidata entities {w,,, - - - , W, }

n S

3.2. LLM-based Knowledge Engineering (LLMKE) Pipeline
3.2.1. Knowledge Probing

The pipeline consists of two steps: knowledge probing and Wikidata entity mapping. For the
knowledge probing step, we engineered prompt templates for probing knowledge from LLMs.
We adopt OpenAT’s gpt-3.5-turbo and GPT-4 [2] in this step. For each of the LLMs, we run
experiments with three types of settings. The first is question prompting, where LLMs are
provided with questions as queries. For example, “Which countries share borders with Brazil?".
The second is triple completion prompting, where prompts are formatted as incomplete triples,
such as “River Thames, RiverBasinsCountry:”. There are several heuristics employed in these
two settings. For example, there are only 5 different Nobel Prizes, so PersonHasNobelPrize has 6
candidate answers, including the empty answer. Providing all potential answers at the prompt
is likely to help LLMs perform well (F1-score close to 1) and return the desired format.

In the third setting, we provide context to help LLMs by enriching knowledge. In the first
step, we ask LLMs to predict the objects based on their own knowledge using the same settings
as question prompting. Then we provided the context, and we let LLMs predict again by
considering the context and comparing it with their own predictions. In this study, we used



Wikipedia as the general context corpus. The first paragraphs of the entity’s Wikipedia page
(the introduction) and the JSON format of the Wikipedia Infobox are organized and provided to
LLMs. LLMs were asked to make predictions again by considering the context and comparing it
with the previous response.

In all settings, we perform few-shot learning, where we first provide three examples. Since
the required format of results is a list, providing examples with the exact format is expected to
help LLMs return better-formatted results. In the dataset, there are some relations that could
potentially have empty results. In this case, the prompt indicated the required return format

(e, []).

3.2.2. Wikidata Entity Mapping

The entity mapping step first finds Wikidata entities for each object string using the MediaWiki
Action API*. One of the actions, wbsearchentities which searches for entities using labels and
aliases, returns all possible Wikidata entities as candidates. Then, in the disambiguation step, the
actual Wikidata entities linked to the objects are selected. To reduce the cost while improving
the accuracy for disambiguation, we treated different relations with three methods: case-based,
keyword-based, and LM-based.

The case-based method is a hard-coding solution for efficiently solving ambiguities for
relations with smaller answer spaces and limited corner cases. For example, CompoundHasParts
only has all the chemical elements as its answer space. Further, it only has one ambiguous
case: ‘mercury’. The case-based method always maps ‘mercury’ in the object lists to Q925 (the
chemical element with symbol Hg) instead of 9308 (the planet). For other relations with a
larger answer space but also entities with common characteristics, we used the keyword-based
method, which extracts the description of the entity and searches entities with their description
using relevant keywords. This method is used when there are common words in the entity
description. For example, object entities of the relation CountryHasOfficialLanguage always
have the keyword ‘language’ in their descriptions.

The above two methods clearly suffer from limitations due to their poor coverage and
inflexibility. The third method is language model-based (LM-based). We constructed a dictionary
of all candidate QIDs with their labels and descriptions, concatenated it with the query in this
first step, and asked LMs to determine which one should be selected. This method is used
when there is no semantic commonality between the answers and disambiguation is required
to understand the difference between entities, e.g., properties with the whole range of human
beings as potential answers such as ‘PersonHasSpouse’. As there is no commonality among
the labels and descriptions of answers, the decision is left to the LMs. This method also has
limitations, such as being time-consuming and unstable.

*https://www.wikidata.org/w/api.php



Table 1
Comparison of the performance of gpt-3.5-turbo and GPT-4 models.

question triple context
Model P R F1 P R FI P R FI
gpt-3.5-turbo  0.581 0.597 0.563 0.576 0.609 0.554 0.625 0.684 0.618
GPT-4 0.682 0.689 0.661 0.678 0.683 0.657 0.676 0.709 0.665
4. Results

4.1. Datasets

The dataset used in the ISWC 2023 LM-KBC Challenge’ is queried from Wikidata and further
processed. It comprises 21 Wikidata relation types that cover 7 domains, including music,
television series, sports, geography, chemistry, business, administrative divisions, and public
figure information. It has 1,940 statements for each train, validation, and test sets. The results
reported are based on the test set.® In the dataset, the minimum and maximum number of
object-entities for each relation is different, ranging from 0 to 20. The minimum number of 0
means the subject-entities for some relations can have zero valid object-entities.

4.2. Model Performance

In terms of the overall performance of the model, GPT-4 is better than gpt-3.5-turbo. The
in-context learning setting has the best performance compared with the other two few-shot
learning settings. For few-shot learning, the performance on question answering prompts and
triple completion prompts is quite close.

From the lens of relations, LLMs perform well when the relation has a limited domain and/or
range, for example, PersonHasNobelPrize, CountryHasOfficialLanguage, and CompoundHasParts.
On the other hand, LLMs perform poorly for relations such as PersonHasEmployer, Person-
HasProfession, and PersonHasAutobiography. This may be due to two reasons: firstly, LLMs
have limited knowledge about public figures and their personal information (except for famous
ones). Secondly, the unlimited answer space for such relations could increase the difficulty of
prediction. The results show that LLMs perform well on the knowledge of geography (CityLo-
catedAtRiver, CountryBordersCountry, CountryHasStates, RiverBasinsCountry, StateBordersState),
and the performance is inversely correlated with the size of the object range.

4.3. In-context Learning

Providing context to LLMs is an established method for improving model performance [10?
]. As such, we experimented with various sources and forms of context and selected the best
one for each relation. In particular, we experimented with using the introduction content of
the Wikipedia article for the subject entity, the Infobox of the Wikipedia article for the subject

*https://github.com/Im-kbc/dataset2023
%To investigate the actual knowledge gap between LLMs and Wikidata, we created ground truths of the test set
for offline evaluation. The online evaluation results from CodaLab are reported in Appendix A.



Table 2

The results of probing GPT-4 with few-shot examples. The ‘context’ represents question prompts with
Wikipedia context. All results have been disambiguated. For each relation, the best F1-scores among
the three settings are highlighted.

. question triple context

Relation P R F_ P R F__ P R F
BandHasMember 0.576 0.632 0.573 0.591 0.627 0.581 0.510 0.627 0.527
CityLocatedAtRiver 0.780 0.562 0.615 0.775 0.578 0.629 0.648 0.504 0.533
CompanyHasParentOrganisation  0.590 0.755 0.590 0.560 0.745 0.563 0.512 0.810 0.520
CompoundHasParts 0.782 0976 0.837 0.782 0.964 0.835 0.787 0.981 0.843
CountryBordersCountry 0.802 0.685 0.730 0.806 0.688 0.734 0.829 0.723 0.763
CountryHasOfficialLanguage 0.956 0.854 0.883 0.949 0.858 0.883 0938 0.873 0.886
CountryHasStates 0.796 0.809 0.800 0.754 0.748 0.750 0.805 0.816 0.807
FootballerPlaysPosition 0.685 0.693 0.680 0.710 0.733 0.708 0.545 0.565 0.550
PersonCauseOfDeath 0.765 0.783 0.762 0.795 0.803 0.793 0.800 0.803 0.798
PersonHasAutobiography 0.478 0471 0.461 0.458 0.486 0.461 0.475 0.471 0.459
PersonHasEmployer 0.362 0.343 0.327 0.353 0.357 0.328 0.325 0.397 0.321
PersonHasNobelPrize 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PersonHasNumberOfChildren 0.550 0.550 0.550  0.520 0.520 0.520 0.690 0.690 0.690
PersonHasPlaceOfDeath 0.670 0.730 0.670 0.690 0.730 0.690 0.783 0.810 0.785
PersonHasProfession 0.494 0420 0.427 0538 0.422 0.444 0.390 0.408 0.363
PersonHasSpouse 0.687 0.690 0.685 0.652 0.660 0.651 0.718 0.750 0.727
PersonPlaysInstrument 0.566 0.565 0.531 0.559 0.519 0.507 0.559 0.597 0.534
PersonSpeaksLanguage 0.747 0813 0.744 0.755 0.836 0.759 0.757 0.808 0.742
RiverBasinsCountry 0.841 0946 0.855 0.841 0931 0.852 0.827 0.941 0.852
SeriesHasNumberOfEpisodes 0.590 0.590 0.590 0.530 0.530 0.530 0.690 0.690 0.690
StateBordersState 0.608 0.600 0.567 0.619 0.608 0.581 0.612 0.618 0.578

Average 0.682 0.689 0.661 0.678 0.683 0.657 0.676 0.709 0.665

entity in JSON format, as well as relation-specific sources of information such as IMDb. The
effect of providing context varies for different models. It is observed gpt-3.5-turbo benefits from
the context more compared with GPT-4. In contrast to our intuition, adding context did not
improve the performance of GPT-4 in all relations as compared to the few-shot setting. For
most properties, where context improved the performance, the introduction and Infobox of
the Wikipedia page are sufficient. Notable exceptions to the above are the SeriesHasNumberO-
fEpisodes and the CountryHasState relations. For the SeriesHasNumberOfEpisodes relation, we
augmented the Wikipedia-based context with context provided from IMDb. The information on
IMDb was added to the prompt prefaced by the label “IMDb”, and the model was asked to use
this information (if it was available) to provide an answer. Moreover, for the CountryHasState
relation, we discovered that GPT-4 would treat ‘state’ more like the definition of ‘country’
than that of the administrative division entity. Therefore, we experimented with different
contexts and realized that the model provided the most accurate results when provided with the
Wikipedia page for the term “Administrative Division”. More information on the experimental
setting for each relation can be seen in Table 3.



Table 3

The context types and disambiguation methods used for each relation.

Relation Context type Disambiguation method
BandHasMember Wikipedia Intro + Infobox Keyword-based
CityLocatedAtRiver Wikipedia Intro + Infobox LM-based
CompanyHasParentOrganisation Wikipedia Intro + Infobox -
CompoundHasParts Wikipedia Intro + Infobox Case-based

CountryBordersCountry
CountryHasOfficialLanguage

Wikipedia Intro + Infobox
Wikipedia Intro + Infobox

Keyword-based

CountryHasStates Wikipedia Page LM-based
FootballerPlaysPosition Wikipedia Intro + Infobox Case-based
PersonCauseOfDeath Wikipedia Intro + Infobox -

PersonHasAutobiography
PersonHasEmployer
PersonHasNobelPrize
PersonHasNumberOfChildren
PersonHasPlaceOfDeath

Wikipedia Intro + Infobox
Wikipedia Intro + Infobox
Wikipedia Intro + Infobox
Wikipedia Intro + Infobox
Wikipedia Intro + Infobox

Keyword-based
Case-based

PersonHasProfession Wikipedia Intro + Infobox Case-based
PersonHasSpouse Wikipedia Intro + Infobox LM-based
PersonPlaysinstrument Wikipedia Intro + Infobox Case-based
PersonSpeaksLanguage Wikipedia Intro + Infobox -

RiverBasinsCountry Wikipedia Intro + Infobox Case-based
SeriesHasNumberOfEpisodes IMDDb + Wikipedia Intro + Infobox -

StateBordersState Wikipedia Intro + Infobox LM-based

4.4. Disambiguation

When employing the baseline disambiguation method provided by the challenge, we noticed
ambiguities for 13 relations in total, with the model predicting the correct string but the returned
QID being different from the ground truth. To remedy this issue, we employed different disam-
biguation methods with increasing computational costs. Specifically, we experimented with
baseline Wikidata-based, keyword-based, case-based, and LM-based disambiguation methods.
The best-performing disambiguation method for each relation is shown in Table ??. From
Table 4, we can observe that F1-score increases for all settings and models.

Table 4
The results of disambiguation methods.

. Baseline Disambiguation

Model Setting p R F1 p R F1
question 0.557 0.574 0.540 0.581 0.597 0.563
gpt-3.5-turbo triple 0.545 0.579 0.525 0.576 0.609 0.554
question (context) 0.599 0.659 0.593 0.625 0.684 0.618
question 0.650 0.661 0.632 0.682 0.689 0.661
GPT-4 triple 0.641 0.651 0.624 0.678 0.683 0.657
question (context) 0.650 0.685 0.641 0.676 0.709 0.665




5. Discussion

5.1. Wikidata Quality

During the construction of datasets and evaluation, it became apparent that the quality of
Wikidata is an important issue, a problem that has also been discussed in previous works [19, 20].
For example, a large number of elements are missing for the relation CompoundHasParts, and
many objects violate the value-type constraint of properties. In this situation, our proposed
method would be useful for automatically providing suggestions and candidates for imperfect
statements and thus enriching Wikidata by improving its quality. Moreover, it is possible
to use LLMs to align the knowledge contained in Wikidata with the knowledge contained
in Wikipedia by using LLMs to complete triples of Wikidata using the Wikipedia articles as
context. Furthermore, the performance of the LLMs on the object prediction task can be used as
a metric to gauge the completeness of Wikidata entities. In cases where the difference between
the predictions of the LLMs and the ground truth is substantial, the entity can be suggested
to the editors for review using a recommender system, such as the one described by [21].
Finally, the labels (synonyms) of Wikidata entities are incomplete, which limits the ability of
our disambiguation method since the system that retrieves the candidate entities needs labels
and aliases to match the given string.

5.2. Knowledge Gap

Through our efforts to use Wikipedia as relevant context to improve the performance of LLMs
in the task, we observed a significant knowledge gap between Wikipedia and Wikidata, which
caused the performance of the model for some of the relations to deteriorate when provided
with context sourced from Wikipedia. To elucidate the cause of this phenomenon, we manually
inspected several of these instances and realized that the information contained in Wikidata is
different from the information contained in Wikipedia. One such example is the pair Ferrari
S.p.A., CompanyHasParentOrganisation, for which LLMs predicted the object Exor, matching
the information on Wikipedia and the official report from Ferrari in 2021, whereas Wikidata
contains the object Ferrari N.V.. This knowledge gap between Wikipedia and Wikidata is an open
issue, and LLMs, either alone or by supporting human editors and suggesting edits, could play a
pivotal role in addressing this issue and improving the data quality and recency of information
contained in Wikidata.

6. Conclusion

Within the scope of the ISWC 2023 LM-KBC challenge, this work aimed at developing a method
to probe LLMs for predicting the objects of Wikidata triples given the subject and property. Our
best-performing method achieved state-of-the-art results with a macro-averaged F1-score of
0.689 (0.7007 online evaluation) across all properties, with GPT-4 having the best performance
on the PersonHasNobelPrize relation and achieving a score of 1.0, while only achieving a score
of 0.328 on the PersonHasEmployer relation. These results show that LLMs can be effectively
used to complete knowledge bases when used in the appropriate context. At the same time, it is



important to note that, largely due to the gaps in their knowledge, fully automatic knowledge
engineering using LLMs is not currently possible for all domains, and a human-in-the-loop is
still required to ensure the accuracy of the information.
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Relation gpt-3.5-turbo gpt-4

P R F1 P R F1

BandHasMember 0.5378 0.5830 0.5295 0.5905 0.6331 0.5838
CityLocatedAtRiver 0.5500 0.4723 0.4845 0.7600 0.6538 0.6792
CompanyHasParentOrganisation  0.4300 0.7500 0.4267 0.6100 0.7650 0.6100
CompoundHasParts 0.9591 09659 09615 0.9962 1.0000 0.9978
CountryBordersCountry 0.8628 0.7756 0.8107 0.8292 0.7699  0.7937
CountryHasOfficialLanguage 09313 0.8731 0.8814 0.9379 0.8821 0.8932
CountryHasStates 0.7926  0.7772 0.7823 0.8048 0.8156 0.8073
FootballerPlaysPosition 0.6400 0.6333  0.6323 0.7100 0.7333 0.7083
PersonCauseOfDeath 0.7600 0.7833 0.7550 0.8000 0.8033 0.7983
PersonHasAutobiography 0.4337 0.5000 0.4490 0.4483 0.4850 0.4583
PersonHasEmployer 0.3053 0.4087 0.3134 0.3533 0.3567 0.3282
PersonHasNoblePrize 0.9900 0.9900 0.9900 1.0000 1.0000 1.0000
PersonHasNumberOfChildren 0.6900 0.6900 0.6900 0.7000 0.7000 0.7000
PersonHasPlaceOfDeath 0.6150 0.7800 0.6167 0.7833 0.8100 0.7850
PersonHasProfession 0.2875 0.3927 0.3029 0.5375 0.4159 0.4395
PersonHasSpouse 0.7583 0.7850 0.7650 0.7083 0.7450 0.7183
PersonPlayslnstrument 0.3987 0.4946  0.4087 0.5485 0.5924 0.5279
PersonSpeaksLanguage 0.8683 0.6893 0.7344 0.7550 0.8360 0.7589
RiverBasinsCountry 0.7869 0.8986 0.8054 0.8408 0.9463 0.8549
SeriesHasNumberOfEpisodes 0.6200  0.6300  0.6233  0.6900 0.6900 0.6900
StateBordersState 0.5753 0.5898 0.5435 0.6139 0.6135 0.5811
Zero-object cases 0.4708 0.7559 0.5802 0.5026 0.9202 0.6501
Average 0.6568 0.6887 0.6432 0.7151 0.7260 0.7007

Table 5
The online evaluation results from Codalab. The results are aggregated from the highest ones in the
three settings for each relation and model.
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