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Abstract
The advent of Large Language Models (LLM) has revolutionized the field of natural language processing,
enabling significant progress in various applications. One key area of interest is the construction of
Knowledge Bases (KB) using these powerful models. Knowledge bases serve as repositories of structured
information, facilitating information retrieval and inference tasks. Our paper proposes LLM2KB, a system
for constructing knowledge bases using large language models, with a focus on the Llama 2 architecture
and the Wikipedia dataset. We perform parameter efficient instruction tuning for Llama-2-13b-chat and
StableBeluga-13B by training small injection models that have only ≈0.05 % of the parameters of the base
models using the Low-Rank Adaptation (LoRA) technique. These injection models have been trained
with prompts that are engineered to utilize Wikipedia page contexts of subject entities fetched using a
Dense Passage Retrieval (DPR) algorithm, to answer relevant object entities for a given subject entity
and relation. Our best performing model achieved an average F1 score of 0.6185 across 21 relations in
the LM-KBC challenge held at the ISWC 2023 conference.

1. Introduction

The rapid advancements in natural language processing (NLP) have propelled the development
of large language models, revolutionizing the way machines understand and generate human
language. One of the pivotal applications of these sophisticated models lies in the construction of
knowledge bases, which serve as repositories of structured information essential for a multitude
of NLP tasks, including information retrieval, question answering, and knowledge inference.

Knowledge bases hold immense potential for enhancing machine understanding of the world,
but constructing them manually is a laborious and time-consuming process. However, the emer-
gence of large language models such as GPT-4 [1], Llama 2 [2] Stable Beluga 2 [3], has opened
new possibilities for knowledge base construction. These models possess extensive linguistic
knowledge and factual knowledge that can be leveraged for automated entity recognition,
relation extraction, and knowledge representation.

One of the prominent sources for constructing knowledge bases is the vast repository of
human-curated information available on Wikipedia. This publicly accessible dataset contains
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an extensive wealth of knowledge on diverse topics, making it an ideal resource for building
comprehensive knowledge bases. Integrating Wikipedia data into knowledge bases allows for a
wider coverage and a well-rounded understanding of various domains.

Nevertheless, the success of constructing knowledge bases using large languagemodels hinges
on the ability to fine-tune these models effectively. Traditional fine-tuning methods often suffer
from scalability issues and demand an excessive amount of computational resources. However,
recent advancements in parameter-efficient fine-tuning techniques, like LoRA (Low-Rank
Adaptation) [4], have showcased promising results in reducing the complexity and computational
requirements while preserving model performance. By efficiently fine-tuning large language
models, researchers can unlock their true potential in knowledge base construction and empower
them to comprehend and generate valuable information.

In this paper, we describe our system developed for Track 2 of the LM-KBC challenge at ISWC
2023 [5], which focuses on using language models of any size for knowledge base construction.
Given an input subject-entity (s) and relation (r), the system attempts to predict all the correct
disambiguated object-entities. Our system performs parameter efficient instruction tuning of
Llama-2-13b-chat and StableBeluga-13B using the LoRA technique while leveraging Wikipedia
text as context which is retrieved using a Dense Passage Retrieval (DPR) model.

2. Related Work

The inquiry into the potential of language models (LM) in replacing or aiding the creation and
curation of knowledge bases was initially posed by [6] and later explored by other researchers [7].
The LAMA dataset which probes relational knowledge in language models through masked
language modeling tasks to complete cloze-style sentences was introduced in [6].

While the initial study utilized manually designed prompts to probe the language model,
subsequent research has demonstrated the advantages of automatically learning prompts.
Various methods have emerged to mine prompts from large text corpora and select the most
effective ones [8, 9]. Additionally, prompts can be directly learned through back-propagation [10,
11], showcasing how learned prompts can enhance the performance on LAMA tasks.

The performance of probing language models can be significantly improved through various
approaches, such as directly learning continuous embeddings for prompts [12, 13], fine-tuning
the LM on the training data [14], or few-shot learning [15]. The authors demonstrate that
combining few-shot examples with learned prompts achieves the best probing results.

While probing language models has been extensively studied in the NLP community, the idea
of utilizing language models to support knowledge graph curation has not received adequate
attention [7]. Some works have demonstrated the combination of language models with
knowledge bases to complete query results effectively [16]. Others have investigated how
language models can be employed to identify errors in knowledge graphs [17] or explored using
language models to weigh KG triples from ConceptNet for measuring semantic similarity. [18]
have showcased the utility of language models in entity typing by predicting entity classes
using language model-based approaches.

Further, the LM-KBC challenge at ISWC 2022 [19] produced interesting submissions on using
LM for KB construction. [20] developed a system that performed task-specific pre-training of



BERT, used prompt decomposition for generating candidate objects progressively, and employed
adaptive thresholds for candidate selection. They utilized additional knowledge triples from
Wikidata KB for BERT pre-training and experimented with cloze-style prompts, but found that
masking nearby tokens of the object-entity did not improve performance. By mining prompts
from Wikipedia and using an ensemble approach with averaged voting, they achieved final
object-entity predictions. They also proposed sticky thresholds for candidate selection based
on likelihood comparison.

[21] introduces the ProP system, which employs GPT-3 [22] under a few-shot setting for
knowledge base (KB) construction. ProP uses various prompting techniques, including manual
prompt creation and question-style prompts, to verify the accuracy of GPT-3 generated claims.
They utilize context examples with specific properties, such as varying answer sets, subjects
with empty answer sets, and question-answer pairs, to train the model effectively.

[23] utilized manual prompts, generated from three automated sources, and applied ensemble
learning for final predictions. Descriptive information fromWikidata was used to create prompts
through ”middle-word”, ”dependency-based” and ”paraphrasing-based” strategies. The BERT-
large model was probed using these prompts, and the five most frequent and likely objects
were selected from the ensemble. Before selecting the top-5 objects, the candidate list was
post-processed by removing stopwords. The threshold for candidate selection was treated as a
hyper-parameter, and its tuning was done separately for each relation on the train dataset.

[24] proposes manual prompts tailored for each relation to probe the BERT-large model,
utilizing semantics and domain knowledge. They uniquely utilize word co-occurrences in
context to design prompts and reason about the relationship between subjects and objects in
questions to optimize prompt design for various relations, observing improvements through
simplemodifications like changing articles in the prompt for the ”plays-instrument” relation. [25]
conducts experiments with different manual prompts and candidate selection thresholds for
each relation during BERT model probing. They also investigate the impact of selecting a larger
number of options in the object list (100, 150, 180, or 200) on overall performance. Additionally,
they create an ensemble of their manually crafted prompts to further enhance the probing
results.

3. The LM-KBC 2023 Challenge

3.1. Description

The LM-KBC 2023 challenge is centered around constructing disambiguated knowledge bases
from language models based on given subjects and relations. Unlike existing probing bench-
marks like LAMA [6], LM-KBC 2023 does not assume any specific relation cardinalities, allowing
subjects to have zero, one, or multiple object-entities. Submissions are required to not only
rank predicted surface strings but also materialize disambiguated entities in the output. The
evaluation process involves calculating precision and recall for each test instance compared to
the ground-truth values. For every relation, the macro-averaged precision, recall and f1-score
are computed. The final ranking of participating systems is determined based on the average
F1-score across all 21 relations. Formally, the task involves predicting all correct object-entities
(o1, o2, ..., ok) using LM probing given the input subject-entity (s) and relation (r).



The challenge comes with two tracks:

• Track 1: A small-model track with low computational requirements (<1 billion parameters)
and usage of context is not allowed.

• Track 2: An open track, where participants can use any LM of their choice and usage of
context is allowed.

3.2. Dataset

The LM-KBC dataset comprises both training and validation sets, encompassing 21 diverse
relations. A test set containing only subject entities and relations was released towards the end
of the challenge. The train, validation and test set each comprise of 1940 records. Each relation
covers distinct subject-entities, and for each subject-relation pair, a comprehensive list of ground
truth object-entities is provided. Each row in the dataset files includes the subject-entity ID,
subject-entity name, a list of all possible object-entity IDs, a list of all possible object-entities,
and the corresponding relation. The entity IDs correspond to the Wikidata ID. To perform
instruction fine-tuning on the models, we consume the provided dataset and generate training
samples in 2 ways:

• Method 1: First, the Train set and Validation set are combined to produce a super set. With
each record, we begin generating a separate instruction tuning dataset (see Section 4.2
for details on the Prompts) by slot filling Prompt 1 and 2. Thus, each record in the super
set begins by producing 2 samples for the instruction tuning dataset. Further, for each
ObjectEntity in the record we slot fill Prompt 3, which additionally generates as many
new samples for the instruction tuning dataset as there are object entities. The generated
instruction tuning dataset is shuffled, keeping 14310 samples for training and 1000 samples
for validation.

• Method 2: This method also utilises Prompt 1,2 and 3 in the same way as method 1
however the instruction tuning training dataset is generated only using the Train set,
while the entire Validation set is used to generate the instruction tuning validation dataset.
7666 samples were used for training and 7644 samples were used for validation.

4. LLM2KB System Description

4.1. Components

4.1.1. Large Language Model

We have selected ’Llama-2-13b-chat’ model from Meta AI and ’StableBeluga-13B’ model from
Stability AI as our base models, as they have been fine-tuned for instruction following, are
open source and have achieved state-of-the-art performance on numerous benchmarks. Both
the models are fine-tuned versions of the original Llama-2-13b base model and have 13 billion
parameters. Llama-2-13b-chat is fine-tuned for chat instructions using Supervised Fine Tuning
(SFT) and Reinforcement Learning with Human Feedback (RLHF). StableBeluga-13B is a Llama-
2-13b model fine-tuned on an Orca [26] style instruction dataset.



Figure 1: LLM2KB System Architecture.

4.1.2. Context Retrieval Model

We have selected Dense Passage Retrieval (DPR) from Meta AI [27] for subject entity context
retrieval. DPR comprises a collection of tools and models used in state-of-the-art open-domain
Question and Answer research. We used ’dpr-ctx_encoder-single-nq-base’ for encoding ques-
tions and ’dpr-ctx_encoder-multiset-base’ for encoding contexts. Further, we store the dense
vectors of the contexts in a Facebook AI Similarity Search (FAISS) vector store for fast search
and retrieval. We believe that augmenting prompts with a context helps the LLM in two ways:

1. Since the answers are factual in nature, the context can aid the LLM to generate answers
with a higher degree of accuracy instead of just trying to recollect them from its stored
knowledge.

2. The chance of a LLM hallucination decreases since it can use the context as a reference
point while generating an answer.



4.1.3. Entity Disambiguation

Once the LLM has predicted an object entity, we send the object entity text to the Wikidata
API to fetch the potential candidates for the disambiguated entity. The candidates returned by
Wikidata are then given to the LLM to pick the correct disambiguated entity. We use the LLM
to perform disambiguation instead of just picking the top result returned by Wikidata API due
to the following reasons:

1. Since the Wikidata API returns candidates by using the object entity surface string as a
search key, it lacks the information of the subject entity and the relation to accurately
rank the correct disambiguated entity as the top result. We even attempted passing the
subject entity and relation along with the object entity surface string to the API, but the
response was either empty or irrelevant.

2. In special cases where the predicted object entity surface string could be disambiguated in
one or more ways, it is vital that the LLM is utilised to find the correct disambiguation. For
e.g. if the question is ”Who is William Shakespeare married to?”, and the LLM correctly
answers ”Anne Hathaway”, the Wikidata API will return entities of both Anne Hathaway
(wife of William Shakespeare) and Anne Hathaway (American actress).

3. Even if we assume that the top result returned by Wikidata is correct, it is risky to rely
on it since the API could in the future start returning results in a shuffled order.

4.2. LLM prompts

We created 4 different prompts based on the format of each of the base models, where Prompts
1,2 and 3 are used for performing instruction tuning and Prompt 4 is used only during inference
for in-context learning. Note: During inference, Prompts 1,2 and 3 are trimmed after [/INST]
for Llama-2-13b-chat and after Answer: for StableBeluga-13B. Instruction tuning is a technique
to perform supervised fine tuning of models to make them learn to produce valid responses for
specific instructions. In our case, the instruction tuning helps the model in 2 ways:

1. Learn to answer relevant object entities for a given question (see Table 1) with and without
context. This is achieved with Prompt 1 and Prompt 2.

2. Given a predicted surface string of an object entity, learn to pick the correct Wikipedia
entity title (but not Wikidata ID) from a list of candidate options. This is achieved with
Prompt 3.

In-context learning is a method where few examples of the expected output are supplied in
the prompt and the model uses them to produce an output in a similar fashion. Prompt 1,2 and
3 are expecting the LLM to produce an answer in a Python list of string format, however we
noticed that the model sometimes produces a syntactically incorrect list. Hence, we use Prompt
4 to demonstrate to the LLM an incorrect format Answer vs. correct format Answer.

4.2.1. Llama-2-13b-chat prompts

1. <s>[INST] «SYS»



You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
Give valid wikipedia page titles in the answer. The answer should be in a python list of string
format.
If you dont know the answer from both the given context and your past knowledge, answer
should just be a python empty list.
«/SYS»
context: ’{context}’
{question} [/INST] Answer: {answer} </s>

In this prompt, the {question} variable is formed by first picking the relevant question
corresponding to the relation (see Table 1) and then replacing the subject entity of the
data row in the {question}. {context} variable is formed by concatenating the strings of
the top 2 contexts returned by the DPR system for the given {question}. It is important to
note that to fetch the top 2 contexts, the DPR context encoder is only fed the Wikipedia
page textual content of the subject entity and we do not use the content of the Wikipedia
Infobox (found at the top right corner of a Wikipedia page), since the Infobox already
contains semi-structured information about an entity which would defeat the purpose of
using a LLM. The {answer} variable is formed by replacing the object entities of the data
row.

2. <s>[INST] «SYS»
You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
Give valid wikipedia page titles in the answer. The answer should be in a python list of string
format.
If you dont know the answer from both the given context and your past knowledge, answer
should just be a python empty list.
«/SYS»
context: ”
{question} [/INST] Answer: {answer} </s>

In this prompt, the {question} variable and {answer} variable are formed in the same
method as the previous prompt, however we do not supply any context.

3. <s>[INST] «SYS»
You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
Choose an answer from the options in the context.
If you dont know the answer from the given context, answer should just be a python empty
list.
«/SYS»
context: ’{options}’
{question} [/INST] Answer: {answer} </s>



In this prompt, the {question} variable is formed in the same method as the previous
prompts, the {options} variable is a list of titles (appended with their descriptions) for the
Wikidata entities returned by the API when queried with a given object entity text. The
titles and descriptions are fetched from the API response. Each separate object entity
will lead to 1 unique training sample. For e.g. if a data row has 4 object entities, then we
will generate 4 separate training samples for it. The {answer} variable is the title of the
response entity which has the same Wikidata ID as the object entity.

4. <s>[INST] «SYS»
Example 1: Wrong Format: [’People’s Republic of China’, ’Laos’, ’Thailand’, ’India’,
’Bangladesh’]”]. Correct Format: Answer: ”People’s Republic of China”, ”Laos”,
”Thailand”, ”India”, ”Bangladesh”] </s>
Example 2: Wrong Format: [’Artibonite’, ’Nord-Est Department’, ’South Department’,’West
Department’, ’Centre Department’, ’Grand’Anse Department’, ’North Department’]. Cor-
rect Format: Answer: ”Artibonite”, ”Nord-Est Department”, ”South Department”, ”West
Department”, ”Centre Department”, ”Grand’Anse Department”, ”North Department”] </s>
Example 3: Wrong Format: [’book’s and page’s’]. Correct Format: Answer: [”book’s and
page’s”] </s>
Your answer should only be a valid python list of string format. Do not give any explainations.
«/SYS»
Use the examples to convert {answer} into a correct python list. [/INST] Answer:

Once an answer is generated from Prompt 1, 2 or 3, it is used as the {answer} variable in
this prompt to format the answer in a correct Python list of string format.

4.2.2. StableBeluga-13B prompts

Please refer the Appendix A for the prompts used for StableBeluga-13B. The {question}, {answer},
{context} and {options} variables are generated in the same method as described for the Llama-2-
13b-chat prompts.

4.3. Training

For both base models namely Llama-2-13b-chat and StableBeluga-13B, we load them in 4 bit
quantized state with frozen weights and only train an injection model using LoRA technique.
The injection model has ≈0.05 % of the parameters of the base models. The time taken for
training was ≈9 hours for method 1 data and ≈5 hours for method 2 data. The training setup
was as follows:

• Libraries: BitsandBytes [28, 29], HuggingFace [30], PyTorch [31]
• Base model: BitsandBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=”nf4”, bnb_4bit_compute_dtype=torch.bfloat16)

• LoRA model: alpha=16, dropout=0.05, r=4, bias=”none”, task_type=”CAUSAL_LM”



Table 1
Questions corresponding to each relation.

Relation Question
BandHasMember Who are the members of _?
CityLocatedAtRiver Which river is _ located at?
CompanyHasParentOrganisation What is the parent organization of _?
CompoundHasParts What are the components of _?
CountryBordersCountry Which countries border _?
CountryHasOfficialLanguage What is the official language of _?
CountryHasStates Which states are part of _?
FootballerPlaysPosition What position does _ play in football?
PersonCauseOfDeath What caused the death of _?
PersonHasAutobiography What is the title of _’s autobiography?
PersonHasEmployer Who is _’s employer?
PersonHasNoblePrize In which field did _ receive the Nobel Prize?
PersonHasNumberOfChildren How many children does _ have?
PersonHasPlaceOfDeath Where did _ die?
PersonHasProfession What is _’s profession?
PersonHasSpouse Who is _ married to?
PersonPlaysInstrument What instrument does _ play?
PersonSpeaksLanguage What languages does _ speak?
RiverBasinsCountry In which country can you find the _ river basin?
SeriesHasNumberOfEpisodes How many episodes does the series _ have?
StateBordersState Which states border the state of _?

• Trainer: epochs=3, optimizer=”paged_adamw_32bit”, gradient_accumulation_steps=2,
per_device_train_batch_size=1, per_device_eval_batch_size= 4, fp16=True,
learning_rate=2e-5, max_grad_norm=0.3, warmup_ratio=0.03, lr_scheduler_type=”con-
stant”, evaluation_strategy=”epoch”

• GPU: 2x NVIDIA V100

4.4. Inference

The overall architecture can be seen in Fig. 1. During inference, we first try to fetch the English
language Wikipedia page text of the subject entity using its Wikidata ID. If the subject entity
does not have an English page, we then pick the text from the primary alternate language page.
We then split the text into chunks of 300 tokens (with an overlap of 50 tokens to maintain
continuity) due to the following reasons:

• LLM have a limit on the context length, which in the case of Llama-2-13b-chat and
StableBeluga-13B is 4096 tokens. Since the Wikipedia text is usually large and may cross
the maximum context length supported by the LLM, it is not feasible to consume the
entire context in one shot.

• Due to the size of the LLM, passing lengthy inputs increases the inference time. Further,
it makes much more sense to pick those chunks of information from the entire Wikipedia
page that are relevant to a given question.



Table 2
LLM2KB results (Precision, Recall and F-1 score are macro average per relation) on Test set with Llama-
2-13b-chat. Train + Validation set were used to generate training samples.

Relation Precision Recall F1 score
BandHasMember 0.7178 0.4151 0.4857
CityLocatedAtRiver 0.7400 0.5205 0.5586
CompanyHasParentOrganisation 0.7200 0.7200 0.6400
CompoundHasParts 0.9318 0.8495 0.8784
CountryBordersCountry 0.8492 0.5848 0.6719
CountryHasOfficialLanguage 0.9154 0.7500 0.8015
CountryHasStates 0.5687 0.3872 0.4399
FootballerPlaysPosition 0.7050 0.6683 0.6783
PersonCauseOfDeath 0.8500 0.8200 0.8200
PersonHasAutobiography 0.6700 0.4075 0.4173
PersonHasEmployer 0.5100 0.2957 0.3327
PersonHasNoblePrize 0.9900 0.9350 0.9367
PersonHasNumberOfChildren 0.4900 0.4900 0.4900
PersonHasPlaceOfDeath 0.8300 0.7600 0.7200
PersonHasProfession 0.6600 0.4628 0.5034
PersonHasSpouse 0.7700 0.5850 0.5867
PersonPlaysInstrument 0.7633 0.6159 0.6354
PersonSpeaksLanguage 0.8500 0.7538 0.7704
RiverBasinsCountry 0.8883 0.7689 0.7896
SeriesHasNumberOfEpisodes 0.4500 0.4500 0.4500
StateBordersState 0.5090 0.3416 0.3815
Average 0.7323 0.5991 0.6185

Each of the context chunks are encoded using the DPR context encoder and stored in a FAISS
vector store for fast search and retrieval. To ensure that the LLM is not just fixated on using only
top 2 contexts, during inference we pick top 3 contexts to test its robustness towards handling
variability. To pick the top 3 relevant context chunks for a given question, the question is
encoded using the DPR question encoder and then passed to FAISS. The top 3 retrieved context
chunks are concatenated to form the {context} variable for the prompts. In cases where a subject
entity does not have a Wikipedia page, the {context} variable will be empty for the prompt, and
the LLM will have to rely on its stored knowledge to answer the question. Prompt 1 is executed
if a context was found whereas Prompt 2 is executed if no context was found.

Once the LLM processes the prompt, the answer can have 0 or more object entities. For
disambiguating each of these surface strings, we query the Wikidata API with each of these
object entities separately. The API will return a list of candidate Wikidata entities, from which
we attempt to find the correct disambiguated entity. To do this, we collect all the candidate
entities and put them in a list to form the {context} in Prompt 3. The expectation is that the
LLM picks the correct disambiguated entity relevant to the question. The Wikidata ID of each
disambiguated object entity is then fetched and stored. In cases where the LLM generated
a string which was not an exact match of the provided options, we pass the LLM output to
Wikipedia API for fetching the most relevant entity.



5. Results and Future Work

The relation level performance of our system can be seen in Tables 2, 3 and 4 (Tables 3 and 4
are in the Appendix B). Our primary experiments involved utilising training samples generated
using method 1 for Llama-2-13b-chat and StableBeluga-13B. Additionally, we also trained a
Llama-2-13b-chat model with method 2 used to generate training samples. As described in
Section 3.2, method 1 utilized samples from both the training set and validation set as part of
the instruction tuning training data, whereas method 2 utilized samples only from the training
set for the instruction tuning training data. Our best performing model was Llama-2-13b-chat
when trained on instruction samples generated using method 1. In training with both method 1
and method 2 data generation strategies, Llama-2-13b-chat performed better than StableBeluga-
13B. We found that while supplying additional training samples using method 1 gave a better
overall F1-score for Llama-2-13b-chat (0.6185), it was not significantly higher than when it was
instruction tuned with method 2 data (0.6016).

’PersonHasNoblePrize’ is the highest scoring relation from our best model and ’PersonHasEm-
ployer’ is the lowest scoring relation from our best model. All the 3 models did not perform
very highly on the 2 relations which only expected numeric answers namely ’PersonHasNum-
berOfChildren’ and ’SeriesHasNumberOfEpisodes’ even after supplying context. After going
through the Wikipedia contexts for the subject entities of these relations, we observed that a
large majority of them never mention anything about number of children or number of episodes,
leaving the LLM to solely rely on its memory of factual knowledge. Overall we observed that
the following are some of the practical challenges after subjective analysis of the results:

• Fragility of LLM during inference towards minor changes in prompts.
• Hallucinations of LLM.
• LLM produces a correct surface string of an object but Wikidata API is unable to return
any relevant entities for it.

Our future work will focus on utilising 30 billion and 70 billion versions of the LLM to see
if that can push the performance further and also experiment with Chain-of-Thought prompt
techniques.
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A. StableBeluga-13B Prompts

1. ### System:
You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
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Give valid wikipedia page titles in the answer. The answer should be in a python list of string
format.
If you dont know the answer from both the given context and your past knowledge, answer
should just be a python empty list.
### User:
context: {context}
{question}
### Assistant
Answer: {answer}

2. ### System:
You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
Give valid wikipedia page titles in the answer. The answer should be in a python list of string
format.
If you dont know the answer from both the given context and your past knowledge, answer
should just be a python empty list.
### User:
context: ”
{question}
### Assistant
Answer: {answer}

3. ### System:
You are a helpful, respectful and honest assistant. Your answers should be crisp, short and
not repititive.
Choose an answer from the options in the context.
If you dont know the answer from both the given context, answer should just be a python
empty list.
### User:
context: {options}
{question}
### Assistant
Answer: [’{answer}’]

4. ### System:
Example 1: Wrong Format: [’People’s Republic of China’, ’Laos’, ’Thailand’, ’India’, ’Bangla
desh’]”]. Correct Format: Answer: ”People’s Republic of China”, ”Laos”, ”Thailand”, ”India”,
”Bangladesh”] </s>
Example 2: Wrong Format: [’Artibonite’, ’Nord-Est Department’, ’South Department’,
’West Department’, ’Centre Department’, ’Grand’Anse Department’, ’North Department’].
Correct Format: Answer: ”Artibonite”, ”Nord-Est Department”, ”South Department”, ”West
Department”, ”Centre Department”, ”Grand’Anse Department”, ”North Department”] </s>
Example 3: Wrong Format: [’book’s and page’s’]. Correct Format: Answer: [”book’s and
page’s”] </s>
### User:
Your answer should only be a valid python list of string format. Do not give any explainations.



Table 3
LLM2KB results (Precision, Recall and F-1 score are macro average per relation) on Test set with Llama-
2-13b-chat. Only Train set was used to generate training samples.

Relation Precision Recall F1 score
BandHasMember 0.7235 0.4132 0.4822
CityLocatedAtRiver 0.7200 0.4948 0.5291
CompanyHasParentOrganisation 0.7400 0.7550 0.6667
CompoundHasParts 0.9280 0.7909 0.8442
CountryBordersCountry 0.8439 0.5501 0.6442
CountryHasOfficialLanguage 0.9000 0.7372 0.7877
CountryHasStates 0.5602 0.3669 0.4221
FootballerPlaysPosition 0.7450 0.4900 0.4917
PersonCauseOfDeath 0.8600 0.8133 0.8150
PersonHasAutobiography 0.6900 0.4125 0.4240
PersonHasEmployer 0.4100 0.2237 0.2555
PersonHasNoblePrize 0.9700 0.9550 0.9567
PersonHasNumberOfChildren 0.4300 0.4300 0.4300
PersonHasPlaceOfDeath 0.8600 0.8100 0.7800
PersonHasProfession 0.6050 0.4560 0.4856
PersonHasSpouse 0.7600 0.5650 0.5667
PersonPlaysInstrument 0.7100 0.5982 0.6133
PersonSpeaksLanguage 0.8650 0.7327 0.7607
RiverBasinsCountry 0.8925 0.7851 0.7997
SeriesHasNumberOfEpisodes 0.4800 0.4800 0.4800
StateBordersState 0.5977 0.3352 0.3983
Average 0.7281 0.5807 0.6016

Use the examples to convert {answer} into a correct python list.
### Assistant
Answer:

B. Additional Results

Tables 3 and 4 contain additional experimental results for Llama- 2-13b-chat and StableBeluga-
13B.



Table 4
LLM2KB results (Precision, Recall and F-1 score are macro average per relation) on Test set with
StableBeluga-13B. Train + Validation set were used to generate training samples.

Relation Precision Recall F1 score
BandHasMember 0.7075 0.4227 0.4850
CityLocatedAtRiver 0.7300 0.4865 0.5225
CompanyHasParentOrganisation 0.8800 0.6500 0.6300
CompoundHasParts 0.8573 0.6581 0.7197
CountryBordersCountry 0.8360 0.4690 0.5654
CountryHasOfficialLanguage 0.9462 0.7372 0.8021
CountryHasStates 0.7984 0.3225 0.3853
FootballerPlaysPosition 0.7100 0.4933 0.5050
PersonCauseOfDeath 0.8800 0.8000 0.8000
PersonHasAutobiography 0.8100 0.3450 0.3533
PersonHasEmployer 0.6700 0.2128 0.2403
PersonHasNoblePrize 0.9800 0.7700 0.7700
PersonHasNumberOfChildren 0.4400 0.4400 0.4400
PersonHasPlaceOfDeath 0.9400 0.6700 0.6700
PersonHasProfession 0.6100 0.3962 0.4457
PersonHasSpouse 0.8500 0.4450 0.4467
PersonPlaysInstrument 0.7667 0.5577 0.6055
PersonSpeaksLanguage 0.8850 0.6190 0.6947
RiverBasinsCountry 0.9170 0.7684 0.8030
SeriesHasNumberOfEpisodes 0.4200 0.4200 0.4200
StateBordersState 0.6817 0.2269 0.2872
Average 0.7769 0.5195 0.5520
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