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Abstract
Knowledge Integration Framework (KIF) is a Wikidata-based framework for integrating heterogeneous
knowledge sources. These can be SPARQL endpoints, SQL endpoints, RDF files, CSV files, etc., and
are represented in KIF as knowledge “stores”. A KIF store exposes a Wikidata view of the underlying
knowledge source by interpreting its content as a set of Wikidata-like statements and allowing it to
be queried through a simple but expressive pattern-matching interface. In this paper, we present LLM
Store, a KIF store implementation that uses language models (LLMs) as knowledge sources. Instead of
consulting a static knowledge base, when queried, the LLM Store uses the underlying LLM to synthesize
Wikidata-like statements on-the-fly. The knowledge completion pipeline used by LLM Store can be
fully customized and supports strategies that range from simple zero-shot prompts to retrieval-augment
generation (RAG). This paper discusses the design and implementation of LLM Store and presents an
evaluation using the test and validation datasets of LM-KBC Challenge @ ISWC 2024. We analyze the
results of the evaluation in light of the results obtained by our submission to the same challenge, which
was based on LLM Store and achieved a macro averaged F1-score of 91%. LLM Store is released as
open-source and its code is available at https://github.com/IBM/kif-llm-store.

1. Introduction

Knowledge bases are at the core of many AI applications. Two key problems associated with
these bases, especially when they are large and general purpose, are accuracy and complete-
ness [1, 2]. It is notoriously hard and expensive to maintain accurate, up-to-date information
covering a wide range of topics [3]. (A study from 2018 [4] estimates the cost per triple at
about $2 for manually curated triples and $0.01 for automatically extracted ones.) Consider
Wikidata [5], one of the largest publicly available knowledge bases. It has been maintained
for over 10 years by a small army of volunteers and bots and currently has about 112 million
entities and 1.5 billion statements. Despite all this effort and scale, it remains relatively easy
to find Wikidata entity pages that are incomplete or contain misleading or false information
(sometimes due to vandalism [6]).

This is why pre-trained (large) language models (LMs or, from now on, LLMs) are such a
promising technology for unsupervised knowledge base construction/completion (KBC) [7].
Their appeal lies in their potential to offer a much faster and, ideally, more cost-effective

KBC-LM’24: Knowledge Base Construction from Pre-trained Language Models workshop at ISWC 2024
$ mmachado@ibm.com (M. Machado); joao.bessa@ibm.com (J. M. B. Rodrigues); guilherme.lima@ibm.com
(G. Lima); srfiorini@ibm.com (S. R. Fiorini); vivianet@br.ibm.com (V. T. da Silva)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://github.com/IBM/kif-llm-store
mailto:mmachado@ibm.com
mailto:joao.bessa@ibm.com
mailto:guilherme.lima@ibm.com
mailto:srfiorini@ibm.com
mailto:vivianet@br.ibm.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


alternative to both manual curation and supervised methods [8]. Also, a particularly interesting
feature of LLMs is that they can operate in real-time. That is, in the context of KBC, LLMs can
be used to generate statements at the time the knowledge base is queried. This can be done
either through zero- or few-shot probing or via retrieval-augmented generation (RAG) [9] by
extracting the statements from some textual context (also obtained or provided in real-time).

In this paper, we propose an approach that leverages this flexibility and real-time operation
capacity of LLMs to the problem of Wikidata-based KBC. Our approach is implemented in LLM
Store1, a software component that uses LLMs to generate Wikidata-like statements from user
queries on-the-fly. LLM Store itself is implemented as a plugin within KIF2, a Wikidata-based
framework for integrating heterogeneous knowledge sources [10]. Both LLM Store and KIF are
written in Python and released as open-source.

The name “LLM Store” comes from KIF’s store abstraction. In KIF, a store is an interface to a
Wikidata view of a knowledge source. This can be a SPARQL endpoint, SQL endpoint, RDF file,
CSV file, or in the case of LLM Store, a pre-trained LLM possibly associated with some textual
context. The basic store operation is the filter call. It takes a pattern of the form Filter(𝑠, 𝑝, 𝑣),
where 𝑠 is the subject, 𝑝 is the property, and 𝑣 is the value, and returns all statements with the
matching 𝑠, 𝑝, and 𝑣 in the underlying knowledge source.

The important thing is that in KIF the patterns consumed and the statements produced by
all stores must follow the syntax of Wikidata [11]. In the case of LLM Store, when a filter
pattern using Wikidata-like entities and values is given, it must query the underlying LLM in
real-time to generate matching Wikidata-like statements. The actual filter pattern evaluation
pipeline used by LLM Store consists of three steps: (context-assisted) knowledge extraction,
entity resolution, and statement construction. In the knowledge extraction step, the input
pattern is converted into a prompt, potentially augmented with context information, and sent to
the LLM. The model’s response is parsed and then, in the entity resolution step, named entities
occurring in it are resolved against the target knowledge base—usually, but not necessarily,
Wikidata. Finally, in the statement construction step, the resolved entities are used to instantiate
the input pattern and construct corresponding statements following Wikidata’s syntax.

To evaluate LLM Store’s approach we compare different methods for the implementation of
each of the steps of the pipeline above. We then analyze the results of these experiments in
light of the results obtained by the system we submitted to the LM-KBC Challenge @ ISWC
2024 [12], which is based on LLM Store. This system [13] achieved a macro averaged F1-score
of 91% in the test dataset of the challenge using the Llama3-8B-Instruct model3.

The rest of the paper is organized as follows. Section 2 gives a concise introduction to KIF
and discusses relevant related work. Section 3 presents the filter evaluation pipeline used by
LLM Store in detail and discusses the various customization options supported by the plugin.
Section 4 presents and discusses the results of an experimental evaluation of LLM Store, including
the results obtained in the LM-KBC Challenge @ ISWC 2024. Finally, Section 5 presents our
conclusions and future work.

1https://github.com/IBM/kif-llm-store
2KIF stands for Knowledge Integration Framework, which is completely different from Knowledge Interchange

Format. It can be accessed at: https://github.com/IBM/kif
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2. Background

KIF [10] is a knowledge integration framework based on Wikidata. It uses Wikidata to standard-
ize the syntax and possibly the vocabulary of the underlying knowledge sources. Users can then
query the sources through a pattern language described in terms of the Wikidata data model.
The integration done by KIF is virtual, i.e., the syntax and vocabulary translations happen at
query time. Before detailing KIF itself, we have to recap the data model of Wikidata.

2.1. Wikidata Data Model

The Wikidata data model [11] consists of entities and statements about entities. Figure 1 shows
the page of entity Q2270, which stands for benzene (the chemical compound). Every entity has
a label, a description, and zero or more aliases. These are shown at the header of the page.

Figure 1: Part of Wikidata’s entity page of benzene. (Adapted from [14].)

Below the header, comes the “Statements” section which groups the statements about the
entity being described. A statement consists of two parts: subject and snak. The subject is the
entity about which the statement is made. The snak is the statement’s claim. It associates a
property with either a specific value (value snak), some unspecified value (some-value snak), or
no value (no-value snak). In this paper, we are mainly concerned with value snaks. So, whenever
we speak of a statement we mean one which can be decomposed into subject, property, and
value. (Note that KIF supports all three kinds of snaks.)

Figure 1 depicts two statements which can be read as follows:

1. “benzene has an LD50 of 4,699–4,701 milligrams per kilogram”



2. “benzene has an LD50 of 87–89 milligrams per kilogram”

LD50 (or median lethal dose) is a toxicity unit that measures the dose of a substance that
is required to kill half of the members of the tested population. Here the subject of both
statements (1) and (2) is the same, “benzene” (Q2270). Their snak is a value snak (of the form
property-value). The property of both is “median lethal dose (LD50)” (P2240). The value of (1)
is the structured quantity “4,700± 1 mg/kg”, and the value of (2) is “88± 1 mg/kg”.

The data model of Wikidata also supports the notions of qualifiers and references associated
with statements. Qualifiers are extra snaks that qualify the statement. In Figure 1, the qualifiers
just below statement (1), highlighted in blue, indicate that the statement assertion holds when
the route of administration is “oral” and taxon is “laboratory mouse”. References are sets of snaks
that keep provenance information. Figure 1 shows two references for statement (1), highlighted
in red. The first one indicates that the statement was obtained from PubChem [15] (a popular
base of chemical information) on April 12, 2024, and carries additional snaks that identify the
subject (benzene) in PubChem. The second reference contains a single snak pointing to an
external page of the CDC (a public health agency in the US).

In KIF, qualifiers and references are treated as annotations and are manipulated through
specific methods of the store API. One important use of references is to distinguish between
statements produced by different stores. This is done by instructing KIF to attach a specific
(unseen) reference to all statements produced by a given store. Using this technique, applica-
tions can distinguish statements produced by LLM Store from statements produced by more
authoritative sources, like PubChem or Wikidata.

2.2. KIF Stores and Filters

The core abstraction of KIF is the store. A store is an interface to a Wikidata view of a knowledge
source. The prototypical store is the SPARQL store, which exposes a Wikidata view of a SPARQL
endpoint. Here is how we create a SPARQL store pointing to WDQS, the public SPARQL query
service of Wikidata:

1 from kif_lib import Store
2 kb = Store('sparql', 'https://query.wikidata.org/sparql')

At line 1, we import from the namespace of KIF the Store constructor. At line 2, we use it to
create a new SPARQL store kb pointing to WDQS. Not incidentally, because WDQS adopts
the Wikidata encoding of RDF, it can be queried directly by the SPARQL store. If that was not
the case, for instance, if we wanted to point the SPARQL store to PubChem’s query interface
(which is not Wikidata-compatible), at line 2, we would have to provide a mapping object to be
used to translate the queries and results to the syntax of Wikidata. (See [10] for details.)

With store kb created, we can now read statements from it as follows:

4 from kif_lib.vocabulary import wd
5 it = kb.filter(subject=wd.benzene, property=wd.median_lethal_dose)
6 print(next(it))
7 # Statement(Item(IRI('...Q2270')), ValueSnak(Property(IRI('...P2240'),

QuantityDatatype()), Quantity(4700, Item(IRI('...Q21091747')), 4699, 4701)))→˓



The kb.filter() call on line 5 searches in kb for statements with subject “benzene” and
property “median lethal dose”. More specifically, when kb.filter() is called its arguments
are used to create a Filter(𝑠,𝑝,𝑣) pattern, which is compiled by the store into a SPARQL
query. This query is then evaluated over the target endpoint and the results are used to construct
a (lazy) iterator it with the matching statements. At line 6, we print the first statement in it.
The result is shown on line 7 and corresponds to the statement (1) of Figure 1.

Note that we used the vocabulary module of KIF (line 4) to avoid writing the full IRIs of
Wikidata entities. That is, instead of wd.benzene, we could have written wd.Q(2270) or even
Item('http://www.wikidata.org/entity/Q2270'). The same applies to the property
wd.median_lethal_dose. That said, whenever possible we will use symbolic names in wd
instead of numeric ids or IRIs.

Fingerprints (indirect ids) In the previous example, we used direct ids (wd.benzene and
wd.median_lethal_dose) to identify the subject and property of the desired statements.
Sometimes, however, we might need to specify an entity indirectly by giving not its id but a
property it satisfies. In KIF, this can be done through a fingerprint (indirect id):

9 it = kb.filter(
10 subject=wd.official_language(wd.Portuguese) & wd.continent(wd.South_America),
11 value=wd.Argentina)
12 print(next(it))
13 # Statement(Item(IRI('...Q155')), ValueSnak(Property(IRI('...P47'), ItemDatatype()),

Item(IRI('...Q414'))))→˓

This filter searches for statements such that: the subject’s official language is Portuguese and
continent is South America (line 10); the property is anything (unrestricted); and the value is
Argentina (line 11). The result, shown in line 13, is the statement “Brazil (Q155) shares border
with (P47) Argentina (Q414)”. Notice that Brazil matches desired subject fingerprint.

As we will see later, in LLM Store fingerprints are used to constrain the universe of predicted
answers to certain kinds of entities or values. For instance, we can set the value parameter of
filter() to the fingerprint wd.instance_of(wd.human) to restrict LLM Store’s answers
to statements whose value is a person.

2.3. Related Work

In 2019, Petroni et al. [16] proposed the LAMA dataset, a seminal benchmark designed to
evaluate the ability of LLMs to retrieve relational facts using cloze-style prompts. This work
spurred numerous follow-ups, including [17, 18, 19, 20, 21]. Among these, the work of Zhang
et al. [18], which introduced LLMKE, bears the closest resemblance to our proposal.

LLMKE was the winner system of track 2 of the LM-KBC Challenge @ ISWC 2023 [22].
The task was to predict the value part (𝑣) of incomplete triples of the form (𝑠, 𝑝, 𝑣), where the
subject 𝑠 is a Wikidata entity and the property 𝑝 is an abstract property, such as bandHasMember,
which may or may not correspond to a single property in Wikidata. Depending on the relation,
the predicted value 𝑣 might be a Wikidata entity or a data value (quantity, string, etc.).



The LLMKE system operates in two main stages: probing and disambiguation. During
the probing stage, the system generates prompts for each input 𝑠-𝑝 pair, guiding the LLM
to produce the label of the Wikidata entity or data value that completes the relation. The
disambiguation stage then maps entity labels to the ids of the correct Wikidata entity. For the
challenge submission, LLMKE used rules tailored to each of the 21 abstract relations. These
rules customized the prompts and the textual context used during the probing stage. In some
cases, rules were also used during the disambiguation process to map specific keywords and
labels to the corresponding data values and entities in Wikidata.

Although the design of LLM Store was inspired by LLMKE, in particular, by the approach
described in [18], it differs in many aspects:

1. LLM Store is not a standalone system designed for one specific purpose. Instead, it
is a component of a larger framework (KIF) and as such can be combined with other
components (stores) and reused by different applications.

2. LLM Store is not tied to a particular LLM platform. It provides a common interface to
access these platforms and comes with builtin support for IBM’s Big AI Model (BAM),
Hugging Face, and OpenAI. Support for new platforms can be added as needed.

3. LLM Store is not limited to a specific set of relations. It works out-of-the-box with any
Wikidata relation and can handle filter patterns other than (𝑠, 𝑝, *), including patterns
with fingerprints whose evaluation go beyond simple value prediction.

4. LLM Store allows users to customize every step of the evaluation pipeline. This includes
the prompt templates, textual contexts, and methods of response parsing and entity
resolution used.

5. LLM Store statements can have annotations and can be integrated with statements of
other KIF stores. Annotations can be used to carry extra information, such as the model
used to generate the statements, textual context, etc. Also, because LLM Store is a KIF
store, the statements it produces can be seamlessly integrated with those produced by
other KIF stores using, for example, a mixer store (see [10] for details).

3. LLM Store

LLM Store is a KIF store that uses an LLM as a knowledge source. Instead of searching for
the given filter pattern in an existing knowledge base, LLM Store converts the pattern into a
prompt, sends it to the underlying LLM, and converts the model’s response back into one or
more statements matching the pattern.

LLM Store

Knowledge 
Extraction

Entity 
Resolution

Statement 
ConstructionFilter

Context 
Generation

Statements

Figure 2: The LLM Store pipeline.



The LLM Store pipeline, illustrated in Figure 2, consists of three main steps: (Context-Assisted)
Knowledge Extraction, Entity Resolution, and Statement Construction. The dashed arrows
represent optional paths. We detail each step next.

3.1. Knowledge Extraction

The knowledge extraction step involves creating and evaluating a prompt over the underlying
LLM. The prompt is created by instantiating a cloze-style prompt template from the input filter
pattern. The default prompt template has the form:

Fill in the gap to complete the relation:
{{subject}} {{property}} {{value}}

When instantiated with the filter pattern:

Filter(wd.Brazil, wd.official_language)

It produces the cloze-style prompt:

Fill in the gap to complete the relation:
Brazil official language ___

Similarly, the same template instantiated with a filter containing a value fingerprint:

Filter(wd.Brazil, wd.official_language, wd.instance_of(wd.sign_language))

Produces the prompt:

Fill in the gap to complete the relation:
Brazil official language ___ where ___ is an instance of sign language

The “where” above was generated from the value fingerprint in the filter and specifies a type
constraint on the answers to be predicted.

In addition to describing the task, the prompt must instruct the model to format the response.
The complete default prompt template is actually the following:

[SYSTEM]
You are a helpful and honest assistant that resolves a TASK. Please, respond

concisely, with no further explanation, and truthfully.→˓

[USER]
TASK: Fill in the gap to complete the relation:
{{subject}} {{property}} {{value}}

The output should be only a list containing the answers, such as ["answer_1",
"answer_2",..., "answer_n"]. Do not provide any further explanation and avoid
false answers. Return an empty list, such as [], if no information is available.

→˓

→˓

The default prompt template is accompanied by a default parsing function that parses the LLM
output into a list of strings. Both the prompt template and the result-parsing function can be
customized using LLM Store’s prompt_template and prompt_parser attributes.



The result of the knowledge extraction step is a list of strings matching the blanks in the
query. Once such a list of strings is obtained, there are two possibilities: either (1) the list is
sent to the entity resolution step to be resolved into a list of Wikidata entity ids; or (2) the list is
sent directly to the statement construction step. By default, the decision is made based on the
datatype of the property used in the input pattern. In Wikidata, every property has a datatype
which determines the range of its possible values. If the datatype is “item” or “property”, LLM
Store sends the knowledge extraction results to the entity resolution step. Otherwise, if the
datatype is a data value type (string, quantity, etc.), LLM Store sends the results to the statement
generation step. The default behavior can be overridden by setting the disambiguation
attribute of LLM Store.

Textual context We just described the context-free knowledge extraction process. LLM Store
also supports the use of textual contexts in the knowledge extraction step. Textual contexts
tend to reduce hallucinations and are at the basis of more advanced prompting techniques, such
as Retrieval-Augmented Generation (RAG) [9].

The LLM Store attribute context, which by default is undefined, instructs the store to use
the assigned text as textual context. In practice, setting context makes LLM Store include in
the default prompt the system instruction “Use the CONTEXT to support the answer” and the
following text under the “[USER]” section:

CONTEXT: {{context}}

For other attributes related to textual contexts, see LLM Store’s documentation.

Context generation Coming up with textual contexts or obtaining them manually quickly
becomes impractical. Because of that, LLM Store comes with a context generator to obtain a
textual context for the input filter pattern automatically. The context generator is based on
Wikidata—more specifically, on the site-links and external ids sections of Wikidata pages, which
contain links to Wikipedia and other external sources describing the pages’ subjects.

Given a Wikidata entity 𝑄 described in the pattern (usually, but not necessarily, the subject),
the context generator (1) retrieves all site-links and external ids from 𝑄’s Wikidata page;
(2) passes these links through a series of scraping plugins to extract text chunks from the target
HTML pages; and (3) ranks the extracted chunks by embedding similarity with a textual version
of the input pattern. The best-ranked chunk is then used as context in the knowledge extraction
step. Note that the context generator is disabled in the default configuration.

3.2. Entity Resolution

The goal of the entity resolution step is to resolve the input entity labels into Wikidata entity
ids. For instance, given the label “Brazilian Portuguese” it should produce the item id Q750553,
which identifies Brazilian Portuguese in Wikidata.

LLM Store currently supports three entity resolution methods. Given an input label, the
three methods use Wikidata REST API’s search function to obtain a list 𝐶 of candidate entities
plus their descriptions. The three methods differ only in how 𝐶 is processed. The first method,



baseline, is the default one; it simply picks the first entity in 𝐶 . The second method, similarity-
based, ranks the descriptions by embedding similarity with the task (and context) text and picks
the entity with the best ranked description. The third method, LLM-based, is similar to the
second but instead of computing embedding similarity, it uses an LLM to rank the descriptions,
by asking which description best matches the task (and context) text. The resolution method to
be used can be customized via LLM Store’s disambiguation_method attribute.

3.3. Statement Construction

The last step of LLM Store’s pipeline is statement construction. This step takes a list of Wikidata
entities or data values as input and instantiates each of these in the input filter pattern, one
at a time. The result is a sequence of output KIF statements. For instance, for a filter pattern
Filter(wd.Brazil, wd.shares_border_with), in which the value part is missing, and
a list of entities [wd.Argentina,wd.Paraguay,wd.Uruguay], the statement construction
step outputs three KIF statements: (1) “Brazil shares border with Argentina”; (2) “Brazil shares
border with Paraguay”; (3) “Brazil shares border with Urugray”.

4. Evaluation

To evaluate LLM Store, we used the validation and test datasets of the LM-KBC Challenge @
ISWC 2024 [12]. As in the 2023 edition, the datasets of the 2024 challenge consist of incomplete
(𝑠, 𝑝, 𝑣) triples with the value part (𝑣) missing. The task is to predict, for each incomplete triple,
zero or more values 𝑣 which, depending on the relation, can be Wikidata entities or data values
(numeric quantities, strings, etc.). The subjects 𝑠 are Wikidata entities and the properties 𝑝 are
abstract relations that may or may not correspond to a single Wikidata relation. In the 2024
edition of the challenge, only five abstract relations are considered (see Table 1).

For the evaluation, we converted each subject-property pair (𝑠, 𝑝) in the datasets into a
corresponding KIF filter pattern. For instance, the pair (Q155, countryLandBordersCountry) was
converted into the pattern

Filter(wd.Q(155), wd.shares_border_with, wd.instance_of(wd.country_))

(Notice the use of a value fingerprint here to restrict the results to things which are countries;
the rationale is that, by itself, Wikidata’s wd.shares_border_with does not capture the
precise meaning of the abstraction relation countryLandBordersCountry.) Table 1 shows the
filter pattern associated with each abstract relation of the 2024 challenge.

Table 1
Mapping between abstract relations, Wikidata properties, and KIF filter patterns.
Abstract Relation Wikidata Property Filter Pattern
awardWonBy winner (P1346) Filter(𝑠, wd.P(1346))
companyTradesAtStockExchange stock exchange (P414) Filter(𝑠, wd.P(414))
countryLandBordersCountry shares border with (P47) Filter(𝑠, wd.P(47), wd.instance_of(wd.country_))
personHasCityOfDeath place of death (P20) Filter(𝑠, wd.P(20), wd.instance_of(wd.city))
seriesHasNumberOfEpisodes number of episodes (P1113) Filter(𝑠, wd.P(1113))



With the entries of the datasets converted to KIF filters, we then proceeded to evaluate each
filter using LLM Store. We tested four different configurations:

Triple LLM Store with the default prompt template and no textual context (see Section 3).

Triple-Context LLM Store with the default prompt template and a custom textual context
obtained using the context generator. In this case, the context generator was configured
as in our submission to the LM-KBC Challenge @ ISWC 2024, i.e., with specific scraping
plugins for each abstract relation. For instance, for awardWonBy, we picked the ner-
extract plugin which searches for entity names in the scraped text. (See [13] for the
precise configuration used for each relation.)

Question LLM Store with a custom question-based prompt template and no textual context. By
a custom question-based template, we mean one in which the task is framed as a question
about the subject. For instance, for the abstract relation seriesHasNumberOfEpisodes,
instead of the default template, obtained from the filter pattern, we used the question
template “How many episodes does the series {{subject}} have?”.

Question-Context LLM Store with the question-based prompt template of Question and the
custom textual context of Triple-Context. We used this configuration in our submis-
sion [13] to the LM-KBC Challenge @ ISWC 2024.

The LM-KBC’24 Challenge limits model size to 10 billion parameters, ensuring that no
participating team can outperform others by monetary investment. Therefore, first, we used
the Llama3-8B-Instruct model to evaluate both the validation and test datasets (the latter being
the final result submitted to the challenge in [13]). We then assessed the validation dataset with
a larger model (Llama3-70B-Instruct) to showcase our solution’s capability to handle different
models and to compare the results with the smaller one. Both models are accessed through the
IBM Big AI Model (BAM) platform.4 However, the results should remain consistent if using the
same models from Hugging Face or platforms like Ollama5 (LLM Store supports both, with the
llm_name parameter set to hf or rest, respectively). Table 2 summarizes the results obtained
by each of the four configurations using: (1) Llama3-8B-Instruct over the validation and test
datasets; and (2) Llama3-70B-Instruct over the validation dataset.

Runtime Figure 3 depicts the average execution time for each of the relations. We highlight
the context generation time within the total execution time, as this is a key feature of the
pipeline. The execution time for the awardWonBy relation is significantly higher than for the
other relations, as the process was divided into several prompting stages. In general, context
generation is the most time-consuming part. However, for the countryLandBordersCountry
relation, the average context generation time was close to zero, due to the use of a cache. We
also mitigated the execution time of the context generation process by caching the content of
the accessed site-links. This solution is especially beneficial when the system is used with a
repetitive set of entities.

4BAM is built by IBM Research as a test bed and incubator for helping accelerate generative AI research and its
transition into IBM products: https://bam.res.ibm.com/

5Ollama is an open-source tool for running, creating, and sharing LLMs on your computer: https://ollama.com/

https://bam.res.ibm.com/
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Table 2
Results for the validation and test datasets using the Llama3-8B-Instruct model.

Validation Dataset Test Dataset
Relation Triple Triple-Context Question Question-Context Question-Context

P R F1 P R F1 P R F1 P R F1 P R F1
awardWonBy 0.27 0.03 0.06 0.50 0.26 0.30 0.29 0.08 0.12 0.50 0.30 0.32 0.60 0.67 0.62
companyTradesAtStockExchange 0.26 0.59 0.25 0.85 0.70 0.66 0.48 0.72 0.42 0.93 0.79 0.77 0.95 0.86 0.85
countryLandBordersCountry 0.83 0.96 0.85 0.98 0.98 0.98 0.85 0.99 0.88 0.99 0.98 0.98 0.98 0.93 0.94
personHasCityOfDeath 0.22 0.67 0.22 0.88 0.87 0.83 0.29 0.63 0.26 0.90 0.88 0.84 0.96 0.97 0.93
seriesHasNumberOfEpisodes 0.12 0.12 0.12 0.82 0.82 0.82 0.13 0.12 0.12 0.85 0.85 0.85 0.95 0.95 0.95
All Relations 0.31 0.54 0.31 0.86 0.82 0.80 0.40 0.57 0.37 0.90 0.85 0.84 0.95 0.92 0.91

Results for the validation dataset using the Llama3-70B-Instruct model.
Validation Dataset

Relation Triple Triple-Context Question Question-Context
P R F1 P R F1 P R F1 P R F1

awardWonBy 0.36 0.12 0.17 0.50 0.32 0.32 0.33 0.12 0.17 0.56 0.29 0.32
companyTradesAtStockExchange 0.45 0.60 0.37 0.95 0.80 0.77 0.73 0.77 0.61 0.93 0.78 0.74
countryLandBordersCountry 0.84 0.99 0.85 0.99 0.99 0.99 0.92 0.99 0.93 0.99 0.99 0.99
personHasCityOfDeath 0.41 0.72 0.39 0.93 0.88 0.87 0.51 0.71 0.42 0.94 0.87 0.86
seriesHasNumberOfEpisodes 0.30 0.30 0.30 0.84 0.84 0.84 0.46 0.42 0.42 0.85 0.85 0.85
All Relations 0.47 0.61 0.44 0.91 0.85 0.84 0.62 0.68 0.56 0.91 0.85 0.84

Figure 3: Comparison of Context Generation Time and Total Execution Time.

Discussion Using Llama3-8B-Instruct, the Triple configuration achieved an average macro
F1-score of 31%. The best-performing relation was seriesHasNumberOfEpisodes, with an F1 score
of 85%, while the worst was awardWonBy, with only 6%. The average score improved slightly,
to 37%, with the question-based configuration (Question), as it mitigated some task formulation
errors. However, the overall F1-score remained low, with the primary bottleneck being the
knowledge extraction process. In particular, the queries involving specific information are
probably not present in the LLM’s training datasets.

The best results for Llama3-8B-Instruct were obtained when contextual information was
incorporated into the prompt, whether using triple or question prompt templates. In the
validation dataset, the average macro F1-score of Triple-Context was 80% and the average
score of Question-Context was 84%. The latter configuration achieves the best average macro
F1-score, 91%, in the test dataset.

In all configurations, relation awardWonBy had the worst score. This is primarily due to the
difficulty in generating relevant context for this relation. When reviewing the dataset entries,
we realized that some entries lacked external links on their Wikidata pages (e.g., Q38215093).



Consequently, the context generator simply did not work in these cases. (In the test dataset,
most of these entities have external links, which explains the improved score of 62%.). Also,
even when external links were available, extracting direct answers was often problematic. The
structure of the HTML pages of links varied a lot, making it impossible to design a custom
scraping plugin that worked well for the various cases.

Using Llama3-70B-Instruct we expected to mitigate the problem in the knowledge extraction
process. While the results improved without the use of additional context, the model still
struggles to provide accurate answers due to the specificity of the domain. However, an
interesting point when using larger models is that considering the settings that use context, the
way we instruct the LLM to perform the task is no longer a differentiating factor. And, aside
from context acquisition issues in certain relations, the remaining errors are likely due to the
entity resolution process and inaccuracies within the dataset.

5. Concluding Remarks

In this paper, we presented the LLM Store, a plugin to KIF that accesses an LLM and responds
Wikidata-structured statements. We detailed how LLM Store works, passing for each of its
pipeline components. Then, we created a system that uses the LLM Store to tackle an LM-KBC
task, showing its efficiency. Results showed that our approach achieved a macro average F1-
score of 91% in the test dataset of the LM-KBC’24 Challenge. The key feature to achieve this
result is the use of our proposed context generation module. However, when not using contexts,
the results may vary, since the knowledge extraction process has a large impact on accuracy.
Very specific relations will probably present poor results. Besides, even when using the context
generation module, our approach may have limitations. The reliance on specialized plugins
that scrape textual context from specific parts of HTML pages introduces a dependency on the
stability of pages, which can easily change and break the plugin. Thus, although LLM Store
may be used as a source of knowledge, it should be used with caution.

Although our system was evaluated over the LM-KBC’24 Challenge, the approach used
by LLM Store is not limited to the challenge’s specific relations. LLM Store can address any
question defined as a pattern involving Wikidata entities. Moreover, we claim that, as a highly
configurable tool, our solution has the potential to accommodate other proposals such as those
already presented in previous years of LM-KBC.

In future work, we aim to enhance the capabilities of LLM Store by introducing some key
improvements and extensions. We will enable more expressive KIF filters, supporting logical
AND, OR, and negation. Since the question-based prompt template yielded the best results, we
aim to make it the default by developing a module that automatically generates questions from
input filter patterns. We aim to improve the LLM-based entity resolution method to make it the
default approach. While the baseline performed better in the Challenge, this method is flawed
because it does not use any context during the disambiguation. Additionally, leveraging KIF’s
ability to create mixed stores (see [10]), we will explore combining multiple LLM Stores for
complementary usage. This approach will involve assigning specific roles to each LLM Store
within a mixer, along with rules governing their functions. For example, one LLM Store might
serve as a judge, by reflecting about the responses from others and determining the final answer.
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