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Abstract
This position paper introduces a new way for large language models (LLMs) to interact with Knowledge
Graphs (KGs), especially for information extraction. Most relation extraction approaches focus on finding
the corresponding textual spans for subject, relation, and object in a text but ignore the actual state of
the KG and the schema defined therein. In this work, the function-calling possibility of LLMs is explored
to search for already defined entities in the KG and add information in the form of triples to the KG. A
huge improvement over previous techniques is that it can also deal with various large ontologies / KGs
and that the added information fits to a provided KG on a schema and instance level. Further validation
checks can be added to increase the quality of the extracted statements. A small playground is provided
to analyze the effectiveness of the approach.

1. Introduction

The rise of the transformer architecture and Large Language Models (LLMs) has led to increased
use of those models in information extraction tasks to enhance extraction quality. For closed
source information extraction (all possible relations are already given) either the model is trained
to extract a fixed set of relations or the possible relations are provided in the prompt. The latter
approach will not scale for large knowledge graphs with like Wikidata [1], which contains more
than 6,236 relations [2]. Moreover, the former approach requires additional steps, such as entity
disambiguation, which results in error propagation.
In this work, we propose an alternative technique to combine LLMs and KGs via function

calling. Some LLMs like GPT-3.5 Turbo (closed source) or Mistral Small [3] and Large (open-
source) can already expect a set of functions in the prompt which are called when the model
returns a structured request to run one of the functions. The parameters of the function are
similarly generated by the LLM.
Given carefully designed functions that interact with the KG, as e.g., searching/creating

instances or properties, the information extraction process can be simplified and scaled to larger
ontologies and KGs.
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2. Related Work

In the NLP community, the closest task to our approach is referred to as relation extraction, and
the survey by Xu et al. [4] provides a good overview of all LLM-related information extraction
approaches. Zaratiana et al. [5] use an encoder-decoder architecture to jointly extract the
entities and relations. Similarly, Cabot et al. [6] use autoregressive seq2seq models to overcome
the error propagation of multiple-step pipelines. One approach that also comprises entity
linking is ReLiK [7], which consists of two modules – retrieve and read. The retriever module
identifies candidate relations and entities, whereas the reader module distinguishes the retrieved
entities and relations and links them to the corresponding textual spans. To the best of our
knowledge, no related work is available that focuses on information extraction with LLMs via
function calls.

3. Function Calling Setup

Given the scenario that some instances, properties, and classes are already defined in the KG,
the task is to extract information from natural language text that fits to the given schema. This
means that each resource is defined in the KG and no two resources are created for the same
real-world entity. The idea is to allow LLMs to interact with the KG via function calls. All
possible functions, together with a description of the functions and parameters, are provided
in the prompt as well as the text to extract information from. The model can then return a
structured query which is executed, and the textual result is provided to the LLM, which can
then decide to call another function or stop the chat by providing a final statement without
calling a function.
According to the example sentence “Paris is the capital of France“, we will show which

functions should exist and which parameters they should expect. All functions are listed in
Tables 1, 2, and 3. In the first step, the subject (in this case “Paris“) needs to be searched in the
KG because it might already exist. Thus, a function search_instance which expects some
text is needed. The result of such a function needs to be a textual representation of possible
candidates in the KG which contains enough information to disambiguate the entities. Thus, the
identifier (URL), the rdfs:label and rdfs:comment are included in the result. A simple SPARQL
query is shown in Table 1. The result of the SPARQL query is a mapping between the selected
variables and the possible substitutions, which need to be serialized as text for the LLM. We
implemented all serializers available in RDFLib, which are CSV, JSON, TXT, and XML1.

Based on the result of the search_instance function, the LLM needs to decide if the entity
described in the text is already represented in the KG or not. In the latter case, the LLM can
either call the search_instance function with another text to search for (which increases the
possibility of finding entities that are represented with synonyms) or create the entity in the KG.
To this end, an additional function create_instance is required (shown in Table 2). It expects
a label, a comment, and an instance type. All function parameters can freely be filled with text
generated by the LLM.

Due to the fact that the LLM calls an actual function that is implemented in Python, various

1https://rdflib.readthedocs.io/en/stable/plugin_query_results.html
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Table 1
Functions that search for entities in the knowledge graph.

Function SPARQL query

search_instance(search_text)

SELECT ?instance_id ?label ?comment ?typeLabel
WHERE {

?instance_id a ?type;
rdfs:label ?label; rdfs:comment ?comment.

?type rdfs:label ??typeLabel.
FILTER regex(?label, "{search_text}", "i")

}

search_property(search_text)

SELECT ?property_id ?label ?comment ?domain ?range
WHERE {

{?property_id a rdf:Property. }
UNION {?property_id a owl:ObjectProperty. }
UNION {?property_id a owl:DatatypeProperty. }
?property_id rdfs:label ?label; rdfs:comment ?comment;

rdfs:domain ?domain; rdfs:range ?range.
FILTER regex(?label, "{search_text}", "i")

}

search_class(search_text)

SELECT ?class_id ?label ?comment
WHERE {

{ ?class_id a rdfs:Class. }
UNION { ?class_id a owl:Class. }
?class_id rdfs:label ?label; rdfs:comment ?comment.
FILTER regex(?label, "{search_text}", "i")

}

validation checks can be performed. As an example, the instance type parameter needs to be
a class defined in the KG. Most often, LLMs create URIs that are based on public KGs such as
DBpedia [8], YAGO [9], or Wikidata [1]. Thereby, it often occurs that the instance type URI
of Paris might look like https://dbpedia.org/ontology/City because these URIs appear often in
the training data. But in the function implementation, a check is inserted to test if the URI is
actually a class in the KG. In case the validation check fails, a textual representation of the error
is returned, as e.g., “The instance type is not a class. Search for it with function search_class.”,
which triggers the LLM to make further function calls. The search_class function works in
the same way as search_instance but restricts the search to RDFS or OWL classes. The user
can also allow the model to call functions that make changes on the schema level, as e.g., adding
classes or properties (see Table 3). Thus, the previous error message about an undefined class
can be extended by “If the class cannot be found, create it with create_class function.”. This
function expects a label, comment, and optionally a superclass. If a superclass is given, then it
also needs to be a defined class in the KG.

After the instance for Paris is either found or created in the KG, the same approach is applied
to the property (capital of) and object (France). The LLM decides which information to extract
from the given text, which entities to search/create, and the order in which they are processed.
Finally, the statement containing the subject, predicate, and object can be added to the KG via

https://dbpedia.org/ontology/City


Table 2
Functions that create instances or whole statements.

Function SPARQL query / validation code
check if instance_type is a class in the KG:

create_instance
(label, comment,
instance_type)

ASK{
{ <{instance_type}> a rdfs:Class. }
UNION { <{instance_type}> a owl:Class. }

}
if not, return “The instance type of the instance is not a class“.
else, create a new URI named instance_uri and execute:

INSERT DATA {
<{instance_uri}> a <{instance_type}>;

rdfs:label "{label}"; rdfs:comment "{comment}".
}
return instance_uri

create_statement
(subject, predicate, object)

check that subject and object are resources defined in the KG
and predicate is a property defined in the KG
check that subject and object are coherent with domain and range
if all validation checks are successful, execute:

INSERT DATA {
<{subject}> <{predicate}> <{object}>.

}

Table 3
Functions that change the schema of the given knowledge graph.

Function SPARQL query / validation code
if super_class is given, check that it is a RDFS or OWL class in the KG
create a new URI named class_uri and execute:

create_class
(label, comment,
super_class)

INSERT DATA {
<{class_uri}> a owl:Class; rdfs:subClassOf <{super_class}>;

rdfs:label "{label}"; rdfs:comment "{comment}";
}
return class_uri
if domain and/or range is given, check that it is a class in the KG
if super_property_id is given, check that it is a property in the KG
if all validation checks are successful, create property_uri and execute:

create_property
(label, comment,
domain, range,
super_property_id )

INSERT DATA {
<{property_uri}> a rdf:Property;

rdfs:subPropertyOf <{super_property_id}>;
rdfs:label "{label}"; rdfs:comment "{comment}";
rdfs:domain <{domain}>; rdfs:range <{range}>.

}
return property_uri



the create_statement function.
The validation checks are a huge advancement because it can be ensured that the added

instance will have the correct class defined in the KG, which would not be possible otherwise.
Thus, it is also a disadvantage to just provide a function execute_sparql (which would also be
possible) because of those additional validations.
The whole extraction works in a greedy way because only one text is processed at a time.

Thus, a decision cannot be revoked once taken, e.g., a domain of a property is fixed when the
property is created. Still, there are possibilities to add more functions that change/remove
classes, properties, or instances. One advantage of the greedy approach is that no further
alignment is necessary, which would be the case when each Wikipedia page is processed in
parallel with an empty KG because each resulting KGs needs to be aligned (the amount of
alignments is usually (𝑛2), where n is the number of KGs [10]).
We provide an implementation2 of all functions using the LangChain framework3 to easily

parse the LLM output and call the corresponding functions implemented in Python using
RDFLib. In our first experiments with GPT-3.5 Turbo, it turned out that the best SPARQL
result serialization is CSV (probably because it is very structured). But the final goal is to use
open-source LLMs to have a reproducible setup and the possibility of running the information
extraction model on our hardware without paying for API access.

4. A Dataset for Fine-Tuning

Due to the fact that most LLMs are not specifically trained for function calls, there is a need for
a dataset showing the use of exactly those functions. Some of the most promising open-source
models are the Mistral models Small [3], Large, Nemo, and Mixtral 8x22B4 because they are
already trained for function calls. Nevertheless, also general pretrained models can be fine-tuned
to be able to make function calls.
But all of the models would rely on the definition of the function without any example of

how to apply the functions and what to do with the result of a function call. Thus a dataset
needs to be generated to show how these functions work in actual information extraction
scenarios. A natural choice is Wikipedia because the text is usually checked by multiple persons,
and many knowledge graphs based on Wikipedia exist. For their REBEL approach (Relation
Extraction By End-to-end Language generation) [6], the authors created a large dataset for
end-to-end relation extraction5. The dataset is based on Wikipedia abstracts and uses links
for entity disambiguation. The alignment from the Wikipedia links to Wikidata is performed
via wikimapper6. To check that the given text containing two mapped entities actually entails
the relation, they use RoBERTa [11] by providing the sentence and a verbalized version of
the complete triple: [CLS]{sentence}[SEP]{verbalized triple}[EOS] All triples with a
higher entailment prediction than 0.75 are kept. With such a dataset all function calls can be

2https://github.com/sven-h/LLMs4IE
3https://github.com/langchain-ai/langchain
4https://docs.mistral.ai/capabilities/function_calling/
5https://github.com/Babelscape/crocodile
6https://github.com/jcklie/wikimapper
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exemplified and shown to the LLM. The dataset can be even further extended by using not
only the abstracts but the whole Wikipedia article. Furthermore, it should be taken care of that
usually only the first occurrence of an entity is linked, whereas all following representations
are not linked explicitly 7. Thereby the number of candidates can be further increased.
In addition, all surface forms8 of entities can be used to showcase that the parameter for

search functions can be changed to actually find the correct entity in the KG. Given the running
example, the search for the entity France could be called multiple times with different tex-
tual representations such as search_instance("France") and search_instance("French
Republic"). It shows that the search functions can and should be called multiple times in case
the correct entity is not yet retrieved. In comparison to relation extraction, the dataset also needs
to reflect the different states of the KG, e.g., the entity is not contained in the KG or the search
functions return multiple possible candidates. This could be regulated by a hyperparameter
𝛾 ∈ [0, 1], which represents a probability of how often the KG should be assumed to not contain
the required entity. In cases where the entity is missing, the create functions should be used.
All information required to create an instance, property, or class is already defined in the KG
and can be used to fill the parameters.

5. Conclusion and Future Work

In this paper we proposed a new technique to combine Large Language Models and Knowledge
Graphs. The basic idea is to let the LLM interact with the KG by function calls that directly
reflect the state of the KG. Thus, all extracted triples will be coherent to the schema, which is
already defined but can also be changed by the LLM if corresponding functions are provided.
The next step is to create the dataset and fine-tune open-source LLMs such as Mistral or

Llama 3 models [13]. Due to the size of the models, the training will be conducted by using a
quantized model with low-rank adaptations (QLoRA) [14].
Up to now, the dataset only provides examples of relations between individuals but not

between individuals and literals. The main difficulty is to map the literal value to the text in a
Wikipedia article, which can be arbitrarily complex, e.g., dates that are written in completely
different ways, such as ’2024-01-01’, ’Jan. 1, 2024’, or even not the full information like ’Jan. 1’.
Currently, the search functions only search for entities where the exact search string is

contained in the labels, and the LLM needs to call those functions possibly multiple times. An
improvement would be to implement a semantic search via Sentence-BERT models [15] like
all-mpnet-base-v29.
Another line of future work is to extend the number of involved LLMs and to include a

human in the loop. Especially when humans create ontologies, the best results are achieved
if more people interact together. In the same way, the number of LLMs could be increased.
Technically, another function like ask_expert (similarly a function ask_human_expert for
human involvement) could be introduced.

7https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#Duplicate_and_repeat_links
8The term “surface form” was mainly introduced by DBpedia Spotlight [12] and covers all link texts that refer

to one article/entity in the KG.
9https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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